skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zou, Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> In this paper, we propose a construction of GLSM defects corresponding to Schubert cycles in Lagrangian Grassmannians, following recent work of Closset-Khlaif on Schubert cycles in ordinary Grassmannians. In the case of Lagrangian Grassmannians, there are superpotential terms in both the bulk GLSM as well as on the defect itself, enforcing isotropy constraints. We check our construction by comparing the locus on which the GLSM defect is supported to mathematical descriptions, checking dimensions, and perhaps most importantly, comparing defect indices to known and expected polynomial invariants of the Schubert cycles in quantum cohomology and quantum K theory. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Many of the questions for training AIs how to answer questions come from the queries users type into search engines (like Google's Natural Questions). Is there a cheaper---perhaps even better---way? We propose a "naturalization" technique to turn high-quality, rigorously edited trivia questions into examples that resemble Natural Questions. Training on our naturalized questions and testing on natural questions comes close to the results with using Natural Questions, and we can improve results on MMLU (a standard modern evaluation set) by using our data. 
    more » « less
  3. null (Ed.)
    A bstract In this note we study IR limits of pure two-dimensional supersymmetric gauge theories with semisimple non-simply-connected gauge groups including SU( k )/ℤ k , SO(2 k )/ℤ 2 , Sp(2 k )/ℤ 2 , E 6 /ℤ 3 , and E 7 /ℤ 2 for various discrete theta angles, both directly in the gauge theory and also in nonabelian mirrors, extending a classification begun in previous work. We find in each case that there are supersymmetric vacua for precisely one value of the discrete theta angle, and no supersymmetric vacua for other values, hence supersymmetry is broken in the IR for most discrete theta angles. Furthermore, for the one distinguished value of the discrete theta angle for which supersymmetry is unbroken, the theory has as many twisted chiral multiplet degrees of freedom in the IR as the rank. We take this opportunity to further develop the technology of nonabelian mirrors to discuss how the mirror to a G gauge theory differs from the mirror to a G / K gauge theory for K a subgroup of the center of G . In particular, the discrete theta angles in these cases are considerably more intricate than those of the pure gauge theories studied in previous papers, so we discuss the realization of these more complex discrete theta angles in the mirror construction. We find that discrete theta angles, both in the original gauge theory and their mirrors, are intimately related to the description of centers of universal covering groups as quotients of weight lattices by root sublattices. We perform numerous consistency checks, comparing results against basic group-theoretic relations as well as with decomposition, which describes how two-dimensional theories with one-form symmetries (such as pure gauge theories with nontrivial centers) decompose into disjoint unions, in this case of pure gauge theories with quotiented gauge groups and discrete theta angles. 
    more » « less
  4. null (Ed.)
    A bstract In this paper we explore nonabelian gauged linear sigma models (GLSMs) for symplectic and orthogonal Grassmannians and flag manifolds, checking e.g. global symmetries, Witten indices, and Calabi-Yau conditions, following up a proposal in the math community. For symplectic Grassmannians, we check that Coulomb branch vacua of the GLSM are consistent with ordinary and equivariant quantum cohomology of the space. 
    more » « less